Pilot License and training resource | Flight Schools and Clubs | Aircrafts | Airports.
Sign Up
PilotOutlook is the largest online community of Pilots, Aviation Industry
      Professionals and Aviation Enthusiasts. It is also an authoritative resource on
      pilot training, licenses, aircrafts, airports and flight schools.
Log in to PilotOutlook

Not a member?
Signing up is easy.
Sign Up
Search PilotOutlook
Help us spread the word
Link to this page:
Tag this page:
AddThis Social Bookmark Button
More options...

Split Shaft / Free Turbine Engine 


Flying Handbook Menu > Transition to Turbopropeller Powered Airplanes > Turboprop Engine Types > Split Shaft / Free Turbine Engine

In a free power-turbine engine, such as the Pratt & Whitney PT-6 engine, the propeller is driven by a separate turbine through reduction gearing. The propeller is not on the same shaft as the basic engine turbine and compressor. [figure14-5] Unlike the fixed shaft engine, in the split shaft engine the propeller can be feathered in flight or on the ground with the basic engine still running. The free power-turbine design allows the pilot to select a desired propeller governing r.p.m., regardless of basic engine r.p.m.

figure14-5. Split shaft/free turbine engine.

A typical free power-turbine engine has two independent counter-rotating turbines. One turbine drives the compressor, while the other drives the propeller through a reduction gearbox. The compressor in the basic engine consists of three axial flow compressor stages combined with a single centrifugal compressor stage. The axial and centrifugal stages are assembled on the same shaft, and operate as a single unit.

Inlet air enters the engine via a circular plenum near the rear of the engine, and flows forward through the successive compressor stages. The flow is directed outward by the centrifugal compressor stage through radial diffusers before entering the combustion chamber, where the flow direction is actually reversed. The gases produced by combustion are once again reversed to expand forward through each turbine stage. After leaving the turbines, the gases are collected in a peripheral exhaust scroll, and are discharged to the atmosphere through two exhaust ports near the front of the engine.

Apneumatic fuel control system schedules fuel flow to maintain the power set by the gas generator power lever. Except in the beta range, propeller speed within the governing range remains constant at any selected propeller control lever position through the action of a propeller governor.

The accessory drive at the aft end of the engine provides power to drive fuel pumps, fuel control, oil pumps, a starter/generator, and a tachometer transmitter. At this point, the speed of the drive (N1) is the true speed of the compressor side of the engine, approximately 37,500 r.p.m.

Powerplant (engine and propeller) operation is achieved by three sets of controls for each engine: the power lever, propeller lever, and condition lever. [figure14-6] The power lever serves to control engine power in the range from idle through takeoff power. Forward or aft motion of the power lever increases or decreases gas generator r.p.m. (N1) and thereby increases or decreases engine power. The propeller lever is operated conventionally and controls the constant-speed propellers through the primary governor. The propeller r.p.m. range is normally from 1,500 to 1,900. The condition lever controls the flow of fuel to the engine. Like the mixture lever in a piston-powered airplane, the condition lever is located at the far right of the power quadrant. But the condition lever on a turboprop engine is really just an on/off valve for delivering fuel. There are HIGH IDLE and LOW IDLE positions for ground operations, but condition levers have no metering function. Leaning is not required in turbine engines; this function is performed automatically by a dedicated fuel control unit.

figure14-6. Powerplant controls—split shaft/free turbine engine.

Engine instruments in a split shaft/free turbine engine typically consist of the following basic indicators. [figure14-7]

• ITT (interstage turbine temperature) indicator.
• Torquemeter.
• Propeller tachometer.
• N1 (gas generator) tachometer.
• Fuel flow indicator.
• Oil temperature/pressure indicator.

figure14-7. Engine instruments—split shaft/free turbine engine.

The ITT indicator gives an instantaneous reading of engine gas temperature between the compressor turbine and the power turbines. The torquemeter responds to power lever movement and gives an indication, in foot-pounds (ft/lb), of the torque being applied to the propeller. Because in the free turbine engine, the propeller is not attached physically to the shaft of the gas turbine engine, two tachometers are justified—one for the propeller and one for the gas generator. The propeller tachometer is read directly in revolutions per minute. The N1 or gas generator is read in percent of r.p.m. In the Pratt & Whitney PT-6 engine, it is based on a figureof 37,000 r.p.m. at 100 percent. Maximum continuous gas generator is limited to 38,100 r.p.m. or 101.5 percent N1.

The ITT indicator and torquemeter are used to set takeoff power. Climb and cruise power are established with the torquemeter and propeller tachometer while observing ITT limits. Gas generator (N1) operation is monitored by the gas generator tachometer. Proper observation and interpretation of these instruments provide an indication of engine performance and condition.

{Turboprop Engine Types}
{Reverse Thrust and
Beta Range Operations}
Partner sites: Shimply.com