Pilot License and training resource | Flight Schools and Clubs | Aircrafts | Airports.
 
Sign Up
PilotOutlook is the largest online community of Pilots, Aviation Industry
      Professionals and Aviation Enthusiasts. It is also an authoritative resource on
      pilot training, licenses, aircrafts, airports and flight schools.
Log in to PilotOutlook

Not a member?
Signing up is easy.
Sign Up
Search PilotOutlook
Help us spread the word
Link to this page:
Tag this page:
AddThis Social Bookmark Button
More options...



Height/Velocity Diagram

 

Rotorcraft Flying Menu >Helicopter Emergencies >Height/Velocity Diagram

 

 

A height/velocity (H/V) diagram, published by the manufacturer for each model of helicopter, depicts the critical combinations of airspeed and altitude should an engine failure occur. Operating at the altitudes and airspeeds shown within the crosshatched or shaded areas of the H/V diagram may not allow enough time for the critical transition from powered flight to autorotation. [Figure 11-2]

Figure 11-2. By carefully studying the height/velocity diagram, you will be able to avoid the combinations of altitude and airspeed that may not allow you sufficient time or altitude to enter a stabilized autorotative descent. You might want to refer to this diagram during the remainder of the discussion on the height/velocity diagram.

An engine failure in a climb after takeoff occurring in section A of the diagram is most critical. During a climb, a helicopter is operating at higher power settings and blade angle of attack. An engine failure at this point causes a rapid rotor r.p.m. decay because the upward movement of the helicopter must be stopped, then a descent established in order to drive the rotor. Time is also needed to stabilize, then increase the r.p.m. to the normal operating range. The rate of descent must reach a value that is normal for the airspeed at the moment. Since altitude is insufficient for this sequence, you end up with decaying r.p.m., an increasing sink rate, no deceleration lift, little translational lift, and little response to the application of collective pitch to cushion the landing.

It should be noted that, once a steady state autorotation has been established, the H/V diagram no longer applies. An engine failure while descending through section Aof the diagram, is less critical, provided a safe landing area is available.

You should avoid the low altitude, high airspeed portion of the diagram (section B), because your recognition of an engine failure will most likely coincide with, or shortly occur after, ground contact. Even if you detect an engine failure, there may not be sufficient time to rotate the helicopter from a nose low, high airspeed attitude to one suitable for slowing, then landing. Additionally, the altitude loss that occurs during recognition of engine failure and rotation to a landing attitude, may not leave enough altitude to prevent the tail skid from hitting the ground during the landing maneuver.

Basically, if the helicopter represented by this H/V diagram is above 445 feet AGL, you have enough time and altitude to enter a steady state autorotation, regardless of your airspeed. If the helicopter is hovering at 5 feet AGL(or less) in normal conditions and the engine fails, a safe hovering autorotation can be made. Between approximately 5 feet and 445 feet AGL, however, the transition to autorotation depends on the altitude and airspeed of the helicopter. Therefore, you should always be familiar with the height/velocity diagram for the particular model of helicopter you are flying.

 

 

 

Common Errors
The Effect of Weight Versus
Density Altitude
Partner sites: Mobile A/B Testing Tool - Optimimo



Social Media Monitoring by SocialAppsHQ